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Rethinking Meta-Analysis: Applications for Air Pollution
Data and Beyond

Julie E. Goodman,1,∗ Catherine Petito Boyce,2 Sonja N. Sax,3 Leslie A. Beyer,3

and Robyn L. Prueitt2

Meta-analyses offer a rigorous and transparent systematic framework for synthesizing data
that can be used for a wide range of research areas, study designs, and data types. Both the
outcome of meta-analyses and the meta-analysis process itself can yield useful insights for an-
swering scientific questions and making policy decisions. Development of the National Am-
bient Air Quality Standards illustrates many potential applications of meta-analysis. These
applications demonstrate the strengths and limitations of meta-analysis, issues that arise in
various data realms, how meta-analysis design choices can influence interpretation of results,
and how meta-analysis can be used to address bias and heterogeneity. Reviewing available
data from a meta-analysis perspective can provide a useful framework and impetus for iden-
tifying and refining strategies for future research. Moreover, increased pervasiveness of a
meta-analysis mindset—focusing on how the pieces of the research puzzle fit together—would
benefit scientific research and data syntheses regardless of whether or not a quantitative meta-
analysis is undertaken. While an individual meta-analysis can only synthesize studies address-
ing the same research question, the results of separate meta-analyses can be combined to
address a question encompassing multiple data types. This observation applies to any sci-
entific or policy area where information from a variety of disciplines must be considered to
address a broader research question.
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1. BACKGROUND

A meta-analysis is a type of systematic review
that can be a powerful tool for assembling, critically
appraising, and synthesizing data from multiple
individual studies. Meta-analysis offers quantitative
methods for combining multiple data sets addressing
a specific research question to yield an overall “con-
sensus” of the data.(1) Commonly used meta-analysis
techniques include descriptive tables, graphical
analyses, and statistical approaches. For example, a
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descriptive table can present the point estimate and
standard error or confidence interval of the outcome
measure from each study, making it easier to com-
pare and detect patterns in the results. Similarly, re-
sults can be displayed and compared graphically, e.g.,
by preparing a forest plot. In meta-analyses, study
results can also be weighted using various stan-
dards, e.g., relative study size, variation among
observations, or factors influencing study quality.

Classical statistical methods that can be used
to quantitatively synthesize study results include
weighted averages and meta-regression, a tool that
uses regression techniques to simultaneously exam-
ine how study results are affected by multiple po-
tential modifying factors (including both continuous
and categorical factors). Heterogeneity reflected in
the study results under consideration can be formally
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Fig. 1. Steps of a meta-analysis. Adapted from CRD.(8)

assessed using statistical tests such as Cochrane’s Q
statistic and Higgins’s I2 test.(2,3) When the study
results are deemed to be adequately homogeneous,
meta-analysis and meta-regression can be conducted
using a fixed-effect model (which treats the effect size
parameters as fixed values reflecting one true popula-
tion effect). When the results are insufficiently homo-
geneous, a random-effects model can be used (which
treats the effect size parameters from the studies
as random values from some underlying population
of values such as a normal distribution). Additional
details regarding methods and issues in conducting
meta-analyses and meta-regressions can be found in
resources such as Blair et al.,(4) Nordmann et al.,(5)

Rothman et al.,(6) and Stroup et al.(7)

A well-conducted meta-analysis prepared fol-
lowing the steps illustrated in Fig. 1 incorporates key
features that help minimize bias, random errors, and
subjectivity when evaluating data.(8) These features
include requirements for: (1) a thorough literature
search; (2) clear and transparent study eligibility cri-
teria; (3) a standardized approach for critically ap-
praising studies; (4) appropriate statistical calcula-
tions to assess comparisons and trends among study
findings; and (5) evaluations of potential sources of
bias and heterogeneity (of both study methods and
results). While some of these features can be in-
corporated into more qualitative, narrative system-
atic study reviews (reviewed by Rhomberg et al.(9)),
the more rigorous, quantitative perspective inherent
in the meta-analysis approach can foster a more in-
depth evaluation of study results and the factors that
influence findings. Although a single meta-analysis

can only evaluate studies of similar design address-
ing a specific research question, the methodology is
adaptable to a wide range of research areas, study
designs, and data types. Thus, it has the potential to
play a valuable role in settings that must synthesize
data from multiple disciplines.

Data from individual studies can be combined to
form one data set and analyzed in what is called a
pooled analysis, but the original data from individ-
ual studies often are not readily available to other re-
searchers. A meta-analysis provides a way to com-
bine results from individual studies when primary
data are not available. Relative to the individual
studies comprising the meta-analysis, the greater sta-
tistical power of the combined data can yield a more
precise estimate of the outcome being studied, re-
duce the possibility of false negative results, provide
evidence regarding potential study biases, and gen-
erate insights regarding sources of observed hetero-
geneity or other patterns in study results.(4) In ad-
dition, combining results of individual studies can
make them more generally applicable (e.g., across
various populations).(5) Overall, a soundly conducted
meta-analysis can help researchers understand and
reconcile apparent contradictions in study data (e.g.,
where available studies report positive and negative
outcomes for the same endpoint).

Development of the National Ambient Air
Quality Standards (NAAQS(10)) illustrates many
potential applications of meta-analysis. Applying
data from a variety of disciplines (including epidemi-
ology, toxicology, atmospheric science, and exposure
science), US EPA has developed NAAQS for six
“criteria” air pollutants: carbon monoxide (CO),
lead, nitrogen dioxide (NO2), ozone (O3), particulate
matter (PM), and sulfur dioxide (SO2). As part of
its most recent NAAQS review process, US EPA
is using a modified Bradford Hill framework to
characterize the weight evidence (WoE) for causal
determinations for each air pollutant and various
human health and ecological outcomes.4 For each
substance, US EPA documents these evaluations
in an Integrated Science Assessment (ISA) report.

4US EPA’s framework adopts the nine “aspects” of study find-
ings to be considered in judging causality identified in Hill;(20)

e.g., strength, consistency, and plausibility of observed effects.
Because the original formulation focused on epidemiology study
results, US EPA modified the discussion of the aspects to make
the framework more broadly applicable to other types of data, in-
cluding results from controlled human exposure, ecological, ani-
mal toxicology, and in vitro studies (e.g., as summarized in Table
I of US EPA(12)).
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Final ISAs have been completed for four of the cri-
teria pollutants: CO,(11) lead,(12) O3,(13) and PM.(14)

The current review processes for NO2
(15,16) and

SO2
(17) are in the early stages.
US EPA and others have used meta-analyses

to assess a limited amount of the data supporting
the NAAQS determinations—primarily data from
epidemiology and controlled exposure studies (see,
e.g., US EPA;(18) Goodman et al.(19)). However,
other types of supporting data (e.g., toxicology and
mechanistic data) have not been evaluated routinely
using meta-analysis, and additional opportunities
exist to use this methodology. Drawing upon rel-
evant examples from air pollutant research, this
article discusses how meta-analysis has been used
to integrate results from individual studies within
specific research areas (e.g., studies addressing a
specific health endpoint), with a focus on identifying
innovative applications of the methodology. In
particular, we examine the strengths and limitations
of existing meta-analyses and identify opportunities
to refine them or expand use of this methodology
to other data types. Although our focus is on air
pollutant evaluations, we also address (1) when and
with what kinds of data meta-analyses can be useful
across a variety of disciplines, (2) the implications of
certain design choices on meta-analysis results, and
(3) how meta-analysis can help when designing and
implementing new research efforts. We also discuss
how the results of separate meta-analyses can be
combined to address a larger question (e.g., a causa-
tion determination) where findings from a variety of
data types and research areas must be integrated.

2. CONTROLLED EXPOSURE STUDIES

In controlled exposure studies, people with
regulated activity levels experience known con-
centrations of substances, such as air pollutants,
in exposure chambers with carefully controlled
conditions.(18) This exposure method minimizes
possible confounding by other factors, and sensitive
experimental techniques can be used to measure
endpoints of interest that are generally not evaluated
in observational epidemiology studies. The types
of effects commonly studied in controlled exposure
studies include reversible, acute effects from short-
duration exposures. Typically, these effects are easily
measured and can be described as categorical or
continuous variables.(21) Controlled exposure studies
often provide important information on health ef-
fects, quantitative exposure-response relationships,

and the biological plausibility of associations iden-
tified in observational studies, as well as insights
regarding sensitive subpopulations.

Although controlled exposure studies, by defini-
tion, allow for substantial control over experimental
study conditions, such studies have a number of fea-
tures that affect study interpretation.(18) First, sub-
jects must be healthy enough to participate in the
study, and the health effects evaluated must be tran-
sient, reversible, and not severe. Therefore, the re-
sults may underestimate health impacts for certain
sensitive subpopulations and will not reflect effects
that are persistent or occur following chronic ex-
posures. Second, these studies often use concentra-
tions that are higher than those normally present in
ambient air, so any observed effects may not occur
at the lower concentrations people typically experi-
ence. Third, these studies generally are conducted
on a relatively small number of subjects, reducing
the power of each study to detect statistically signif-
icant differences in the health outcomes of interest.
Despite these limitations, controlled exposure stud-
ies are generally good candidates for meta-analysis
because they often have homogeneous study designs
and address the same research question. In fact, the
small number of subjects per study makes meta-
analysis a very important tool to evaluate these stud-
ies as a whole because meta-analysis can provide a
systematic framework for combining the results from
many small studies, increasing the statistical power to
observe associations.

The current NAAQS determinations for O3,
SO2, and NO2 are based largely on controlled expo-
sure study results, in addition to results from observa-
tional epidemiology studies. To date, NO2 is the only
criteria pollutant for which US EPA has conducted
a meta-analysis of controlled exposure studies. In
its 2008 Integrated Science Assessment of Oxides of
Nitrogen, US EPA evaluated the effects on airway
responsiveness to nonspecific challenge agents (e.g.,
carbechol, cold-dry air, histamine, methacholine) fol-
lowing NO2 exposure in people with mild asthma.(18)

US EPA classified individuals as having either an in-
crease or decrease in airway response based on one
of three measures (i.e., specific airway conductance
(sGaw), specific airway resistance (sRaw), and forced
expiratory volume in 1 s (FEV1)). US EPA then con-
ducted a meta-analysis to determine whether the per-
centage of people with lung function decrements was
greater if they were exposed to NO2 or filtered air.(18)

Altogether, the analysis included data from
17 studies of 355 asthmatics with one-hour exposures
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ranging from 0.1 to 0.6 ppm NO2. US EPA evaluated
the combined data and data stratified by exposure
level (0.1, 0.1–0.2, 0.2–0.3, and >0.3 ppm) and activity
level (rest vs. exercise). US EPA reported that NO2

was not associated with airway hyperresponsiveness
(AHR) in people exposed while exercising, but it was
associated with AHR in people exposed at rest at
all exposure levels (although exposure-response was
not evaluated specifically). US EPA’s overall conclu-
sion was that 60-min exposures to �0.1 ppm NO2

were associated with small but significant increases
in nonspecific AHR in people with mild asthma. In
the Final Rule for NO2, US EPA(22) stated that it was
appropriate to consider NO2-induced AHR in char-
acterizing NO2-associated health risks. It based the
one-hour NAAQS of 0.1 ppm largely on this analysis,
its evaluation of the observational epidemiology lit-
erature, and the potential for a population-level shift
in the distribution of NO2 health effects.

US EPA reported heterogeneity in the responses
of asthmatics exposed to NO2. This variation may
reflect differences in individual subjects and expo-
sure protocols (e.g., use of mouthpieces vs. cham-
bers to administer exposures, evaluation of effects
during rest vs. exercise, participation by obstructed
vs. nonobstructed asthmatics, and varying use of
medications by participants) as well as potential
differences in how specific investigators administer
protocols.(18) US EPA did not quantitatively eval-
uate the possible impact of any these variables on
the observed responses, except for comparing results
based on activity level in a limited fashion (based on
the observation that responsiveness to NO2 is often
greater following rest than exercise).

Subsequent evaluations of the NO2-controlled
exposure studies in humans illustrate how more
refined meta-analyses (assessing the strength of
responses), as well as meta-regressions (formally
assessing dose-response relationships), can enhance
insights regarding quantitative NO2 exposure-
response relationships and specific factors influ-
encing such associations.(19) Similar to US EPA,
Goodman et al.(19) evaluated the effects of NO2

exposure (at concentrations ranging from 0.1 to
0.6 ppm) on AHR to airway challenges in a total
of 570 asthmatics in 28 controlled exposure studies.
Including studies of both specific and nonspecific
responsiveness, this meta-analysis stratified analyses
by factors demonstrated to affect AHR, i.e., airway
challenge (specific/nonspecific), exposure method
(mouthpiece/whole chamber), and activity during
exposure (rest/exercise).(23,24)

The primary difference between the US EPA(18)

and Goodman et al.(19) analyses is that while US
EPA(18) evaluated only the percent of people with
decreased AHR, Goodman et al.(19) also evaluated
the magnitude of the change in AHR following NO2

(vs. filtered air) exposure. They assessed magnitude
by evaluating measurements of (1) the provocative
dose of a challenge agent necessary to cause a
specified change in lung function and (2) the change
in FEV1 after an airway challenge (e.g., Fig. 2).
Goodman et al.(19) concluded that although several
effect estimates from the meta-analyses were statis-
tically significant, they were very small and not likely
to be clinically relevant based on US EPA criteria
defining moderate or severe outcomes.(25,26) Using
meta-regression and effect assessments stratified by
exposure level (0.1–0.2, 0.2–0.3 ppm, etc.), exposure-
response associations were not statistically significant
in the overall or stratified analyses (e.g., Fig. 3).

Compared to Goodman et al.,(19) US EPA(18)

combined a greater number of studies in each meta-
analysis because it did not use specific outcome mea-
surements (e.g., the magnitude of the change in a
specific lung function measure) but, rather, trans-
formed each outcome to a binary variable (i.e., an
increase or decrease in AHR based on any one of
several possible measures). However, using this ap-
proach, US EPA(18) could not evaluate the magni-
tude of any effect or whether the effect increased in
magnitude as exposure increased (i.e., exposure re-
sponse). As a result, US EPA(18) was unable to fully
assess whether observed statistically significant asso-
ciations are causal, or whether effects were more in-
dicative of homeostasis or adversity.

Because the NAAQS are intended to protect
against adverse effects, the types of insights into
causation and effect adversity afforded by the re-
fined meta-analysis and meta-regression approach
clearly could play an important role in determin-
ing protective standards. Moreover, as illustrated
above, greater use of these approaches would pro-
vide greater insights into the quantitative nature of
exposure-response relationships, as well as the key
factors influencing such relationships. As a result,
these powerful tools merit greater use in this research
area than has occurred to date. It is noted that asso-
ciations or effects are often identified as a basis for
scientific and regulatory concern simply due to statis-
tical significance; however, it is critical that such find-
ings be interpreted within the full context of infor-
mation needed to determine causality and adversity
(e.g., Goodman et al.(27)).
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Fig. 2. Forest plot showing the difference in responses to airway challenge provocative doses following exposure of asthmatics to NO2 vs.
air. This figure illustrates the types of meta-analysis findings that can be graphically illustrated in a forest plot, e.g., the average change
per dose from each study (the central dots within the squares), the proportional weights used in each meta-analysis (the squares), and
summary measures and confidence intervals for each dose level (horizontal lines) and the overall study (the center lines and lateral tips
of the diamonds). The results from individual studies and study combinations can be compared with the vertical lines (with the solid line
indicating no effect and the dotted line indicating the overall summary measure) to assess whether results are consistent across studies or
whether a dose-response relationship appears to exist. Adapted from Goodman et al.(19)

Meta-analyses of controlled exposure studies
have not yet played a role in NAAQS evaluations
of other criteria air pollutants. For O3, several con-
trolled human exposure studies have evaluated as-
sociations between exposure and adverse effects on
lung function.(28–31) The majority of these studies re-
ported no statistically significant changes after 6.6-
hour exposures (with moderate exercise) to up to
0.06 ppm O3. Because these studies are fairly ho-
mogeneous, a meta-analysis potentially could yield
increased power to detect statistically significant ef-
fects. Unfortunately, the publications from these

studies do not provide sufficient data to explore this
possibility.

In these studies, healthy young adults were ex-
posed to O3 while exercising for up to 6.6 hours. Lung
function was measured at several time points; how-
ever, complete data for all time points is not included
in all publications of these studies. Omitting the data
from the intermediate time points complicates data
interpretation (e.g., by preventing researchers from
evaluating whether findings reflect false positive re-
sults, a possibility that increases with an increased
number of statistical comparisons). Similarly, in the
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Fig. 3. Association between NO2 expo-
sure and airway hyper-responsiveness in
asthmatics based on meta-regression of
the difference between airway challenge
provocative dose following exposure to
NO2 vs. air. This figure illustrates the
use of a bubble plot to display meta-
regression results. Each circle represents
the findings from one study at a given
exposure, while the area of each cir-
cle is proportional to the weight given
to each measure in the meta-regression.
Adapted from Goodman et al.(19)

absence of complete data, scientists conducting meta-
analyses face greater challenges in assessing whether
a statistically significant result is causal or simply a re-
sult of unaccounted for multiple comparisons and/or
selection bias in the underlying studies. More com-
plete data would also allow researchers to better
evaluate other aspects of each study (e.g., the effects
of exercise on the study observations).

Overall, the more focused nature of study con-
ditions in controlled exposure studies enhances
researchers’ ability to design studies with greater
consistency, making meta-analysis a particularly at-
tractive tool for synthesizing findings from such stud-
ies. However, as illustrated in the examples pre-
sented above, reporting choices in the original study
and the meta-analysis design can affect interpreta-
tion of findings. For example, if individual studies
provide only a subset of the available data, sub-
sequent data syntheses will be hampered and may
yield biased results. Moreover, even when more com-
plete information is available, meta-analyses of a spe-
cific topic can be interpreted differently, depending
on how they are conducted. Important factors influ-
encing interpretation include which studies are in-
cluded in the analysis, the overall size of the data set,
the specific exposure conditions evaluated, how out-
comes are measured, how an outcome is considered
(e.g., whether measurements are transformed), the
approaches used to assess how various factors influ-
ence specific outcome measures, and how exposure-
response analyses are conducted (e.g., using meta-
regression).

Because controlled exposure studies play such
an important role in US EPA’s NAAQS deter-
minations, using appropriate and rigorous method-
ologies to analyze such data is critical. Even in a
relatively homogeneous class of studies such as con-
trolled exposure studies, significant differences can
exist among studies in the data that are collected,
analyzed, and reported. Such differences can affect
choices made in designing and implementing meta-
analyses, and those choices have consequences for in-
terpreting results.

3. OBSERVATIONAL EPIDEMIOLOGY
STUDIES

Observational epidemiology studies explore the
relationships between exposures and health out-
comes in various populations, including the general
population and population groups within specific
exposure settings (e.g., workplaces). In contrast to
controlled exposure studies, potential associations
between exposures and outcomes are evaluated in
“real-world” settings in observational epidemiology
studies. As a result, researchers have far less control
over study conditions and a greater degree of het-
erogeneity arising from aspects of study features and
data analysis is inherent both within and among these
studies (e.g., in population demographics and health
status, types and nature of participants’ exposures,
measures of exposures and effects, and types and
extent of confounding). Synthesizing findings across
observational studies is also complicated by the
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frequent lack of standardized approaches for pre-
senting study methods and results, as well as the
increasingly complex statistical methods used to
analyze such data. While this inherent heterogeneity
presents challenges in synthesizing study results, it
also highlights the importance of applying tools such
as meta-analysis to better understand and quantify,
where possible, the bases for observed differences in
findings (e.g., Stroup et al.(7)). In addition, when data
from observational studies are used to support pol-
icy decisions, their heterogeneous nature presents
more choices in selecting specific research areas
warranting synthesis, more need to determine areas
where synthesizing information will most effectively
impact policy decision making, and more potential
benefit in enhancing understanding of the available
literature.

One heterogeneous element of observational
epidemiology studies is the range of possible study
designs, including time-series, cross-sectional, co-
hort, case-control, case-crossover, and panel stud-
ies. Researchers have used these study designs to as-
sess both acute and chronic health effects associated
with criteria air pollutants across a range of exposure
durations. For example, standard cross-sectional
studies examine exposure and outcome measures re-
flecting a single point in time, time-series studies
examine exposure-response associations at multiple
points over short time periods (e.g., days), and co-
hort studies typically follow study populations over
long time periods (e.g., years or decades). In many
cases, the studies are “opportunistic”; i.e., they are
designed around data sources collected for other pur-
poses, such as air data from fixed-site air monitors
used to assess regulatory compliance. Exposure mea-
sures can also vary, e.g., the averaging time used to
calculate air concentrations or the lag time between
exposure and response measurement.

Ecological time-series studies are often used to
assess health effects of short-term exposures to air
pollutants. These studies compare daily population-
averaged exposure estimates with daily population-
averaged health endpoint counts (e.g., hospital
admissions, emergency department visits, disease in-
cidence or prevalence, and mortality). The relative
rate of the endpoint (e.g., percent increase in mor-
tality per unit increase in daily air pollution) is often
calculated using either generalized additive models
(GAMs) or generalized linear models (GLMs), two
statistical modeling approaches that differ in their de-
gree of flexibility and how confounding factors can
be addressed.(32) Effect estimates can differ depend-

ing on the methodology used. Cohort studies, such as
the American Cancer Society (ACS) Cancer Preven-
tion Study, are commonly employed to assess health
effects from long-term exposures.(33,34) In these stud-
ies, health effects are inferred based on differences
in pollution levels between cities, rather than day-to-
day differences in pollution levels in a single city. Be-
cause any factor that varies from city to city could
be a potential confounder (including socioeconomic
and lifestyle factors), controlling for confounding is
particularly challenging.

For lead, many observational epidemiology stud-
ies have focused on effects associated with chronic
exposures. Many such studies are cross-sectional in
design, examining exposure and outcome data from
individual studies or other sources (e.g., the Na-
tional Health and Nutrition Examination Survey
(NHANES)). Several cohort studies have also been
conducted, including a set of studies initiated in the
early 1980s that were coordinated to a limited de-
gree to help researchers compare and synthesize
results.(12,35)

For a number of criteria air pollutants (e.g., PM,
SO2, and NO2), US EPA has focused on respira-
tory effects, cardiovascular effects, reproductive and
developmental effects, cancer, and mortality. Within
these general categories, US EPA has evaluated
many specific endpoints. For example, for respira-
tory effects associated with PM2.5 (particulate mat-
ter <2.5 μm in diameter), studies have evaluated
asthma, pulmonary function, respiratory symptoms,
hospital admissions, and emergency department vis-
its, as well as markers of pulmonary inflammation or
injury.(14) In the case of lead, US EPA has assessed
its potential causal role in 25 types of health effects
in seven categories of organ systems or effects.(12)

Approaches used to estimate exposure represent
an important source of heterogeneity. For example,
because the composition and particle size distribu-
tion of different types of PM vary, studies can fo-
cus on specific types of PM (e.g., diesel exhaust parti-
cles), PM source areas (e.g., urban or rural settings),
or specific size fractions (e.g., total suspended PM,
particulate matter <10 μm (PM10), or PM2.5). Be-
cause these different types of PM may not be compa-
rable, it is not always appropriate to combine studies
that evaluate them. To address this problem, some
researchers have applied conversion factors (e.g., to
convert PM10 to PM2.5

(36)); however, this approach
can introduce uncertainty into data analyses because
such factors can vary under different site-specific
conditions.(37)
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Heterogeneity can also exist in approaches to
measuring exposure (e.g., using personal, ambient, or
indoor air measurements) or averaging exposure du-
ration; e.g., health effects of O3 exposures have been
evaluated based on a daily average, a daily maximum
eight-hour average, or a daily one-hour maximum.
Results based on different exposure estimates can-
not easily be combined. To address this issue in meta-
analyses, some researchers have used conversion fac-
tors to derive estimates reflecting a uniform averag-
ing time.(38) These conversion factors, however, have
been shown to introduce error and distort observed
pollution patterns, and can result in biased health ef-
fect estimates.(39)

Among the criteria pollutants, estimating expo-
sure is particularly challenging for lead. As a result
of historical lead uses and environmental distribu-
tion, lead exposures can occur via numerous environ-
mental media in addition to air (e.g., soil or drinking
water), and historical as well as stored sources (e.g.,
bone lead) from past exposure are relevant for ex-
posure assessment. In addition, exposure modeling
for lead (e.g., to assess potential impacts of air emis-
sions on human exposures) is a multistep and mul-
tifaceted process. Moreover, because most epidemi-
ological studies assess lead exposure levels based on
biomonitoring data (e.g., blood lead levels), which re-
flect an integrated measure of lead exposures across
media and time frames, studies reflecting exposures
from a range of sources (e.g., including dietary or
drinking water sources) are relevant in health eval-
uations for lead. Thus, the exposure characterization
for lead encompasses a diverse spectrum of poten-
tial sources, measurement methods, and modeling
approaches.

3.1. Meta-Analysis Applications

Meta-analyses and related data synthesis meth-
ods (e.g., pooled analyses) have played an increas-
ingly important role in NAAQS evaluations of obser-
vational epidemiology studies. Such analyses include
traditional meta-analyses, e.g., where published re-
sults from air pollution studies conducted in individ-
ual cities are combined using meta-analytical meth-
ods to obtain a summary estimate. Air pollution
research also includes multicity studies (a type of
pooled analysis), where city-specific effects are es-
timated using a common analytic framework. Ap-
plying similar techniques to those used in meta-
analysis, these effects are then combined to estimate

effects across all cities.5 The use of consistent an-
alytical approaches in multicity studies helps to re-
duce the heterogeneity commonly encountered when
combining results from more disparate individual
studies. Moreover, considering all of the raw data
collected in a multicity study (rather than focusing
only on published results) avoids publication bias.
These approaches are particularly useful in explor-
ing sources and impacts of heterogeneity, increas-
ing statistical power to detect effects, yielding more
broadly applicable overall effect estimates, and eval-
uating concentration-response relationships.

The largest U.S. multicity time-series study is
the National Morbidity, Mortality, and Air Pollu-
tion Study (NMMAPS).(40) Using data collected
in 90 cities, researchers examined associations
between short-term exposures to air pollutants
(including PM10, PM2.5, and O3) and mortality.(41–44)

Researchers have explored the study findings re-
garding health impacts of air pollution on a city,
regional, and national level (e.g., Fig. 4). Specifi-
cally, semi-parametric regression statistical models
(e.g., GAMs or GLMs) have been used to estimate
city-specific effects; researchers have then applied
hierarchical statistical models to estimate national
effects, develop concentration-response functions,
and evaluate sources of heterogeneity across cities.

In addition to the multicity studies, several re-
views and meta-analyses of air pollution epidemi-
ology studies have been conducted, primarily of
time-series mortality studies.(32,36,38,45–48) Some of
these studies evaluated the health impacts of sev-
eral air pollutants (e.g., PM10, SO2, NO2, CO, and
O3), both independently and in a multipollutant
context.(36) Others have focused on only one pollu-
tant (e.g., O3), but considered potential confound-
ing by copollutants (e.g., PM).(38,48) Overall, these
reviews have explored the role of confounding fac-
tors in exposure-outcome relationships, identified
systematic approaches for applying time-series stud-
ies in meta-analyses, and evaluated the relative mer-
its of various statistical models and how well they es-
timate health effects.

For the past 20 years, researchers have used
meta-analysis to synthesize diverse aspects of the
lead literature, including studies addressing health

5In the multicity studies, the hierarchical data set includes subjects
within cities on the first level and cities in the second level. These
types of multilevel analyses allow for using study characteristics
as potential explanatory variables that can shed light on differ-
ences in outcomes across cities.
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Fig. 4. Percent increase in total mortality associated with a 10 μg/m3 increase in PM10 in 90 NMMAPS cities, with 95% confidence intervals
and grouped by region. This figure illustrates another approach to displaying results using a forest plot. The open circles represent specific
cities. Summary estimates based on two methodologies are shown, in bold, to the right of the individual city results for each region (as
delineated by the dotted lines) and for national estimates (shown on the far right). Adapted from Samet et al.(40)

effects (e.g., neurocognitive effects;(49) behavioral
effects;(50) cardiovascular effects such as blood
pressure impacts;(51) and cancer(52)), potential ef-
fect markers (e.g., genetic polymorphisms for δ-
aminolevulinic acid dehydratase, an enzyme involved
in heme biosynthesis (ALAD)(53)), and exposure is-
sues such as effectiveness of interventions to re-
duce exposure.(54) These analyses have estimated
associations between lead exposure and various out-
comes, odds or risk ratios, and concentration- or
dose-response relationships.

Overall, meta-analyses (and multicity studies) of
observational epidemiology studies are but one com-
ponent of US EPA’s descriptive discussions of spe-
cific health endpoints in its NAAQS evaluations.
For example, for lead, meta-analyses have been in-
cluded in discussions of blood pressure(51) and con-
duct disorder.(55) For several other criteria air pollu-
tants (e.g., PM and O3), multicity studies have played
a fundamental role in policy decisions regarding the
NAAQS. These meta-analysis applications provide
numerous opportunities to identify ways that this

technique could be used more systematically and ef-
fectively in the future.

3.2. Meta-Analysis Interpretation Issues

Like the meta-analyses conducted using NO2

controlled exposure studies, the observational epi-
demiology literature regarding criteria air pollutants
illustrates how differences in meta-analysis choices
can affect results and interpretations. As illustrated
below, two key issues to consider when interpreting
meta-analyses findings are bias and heterogeneity.

3.2.1. Bias

Meta-analysis applications in air pollutant re-
search reflect the importance of carefully considering
potential bias in study data collection, presentation,
analysis, and synthesis. In particular, any systematic
differences in the analytical approaches used in in-
dividual studies can result in bias in a meta-analysis.
As one example, the meta-analyses of O3 time-series
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studies illustrate how bias can occur based on the av-
eraging time or lag period between exposure and ef-
fect chosen when analyzing and reporting the study
results (i.e., selection bias). For example, both Levy
et al.(48) and Bell et al.(38) found higher effect esti-
mates based on results reflecting the most statisti-
cally significant lag times reported in individual time-
series studies versus using a consistent lag time of 0 in
the effects analyses. This type of bias can be avoided
by analyzing and reporting the data using a single
consistent averaging time or lag time for all studies.
In a meta-analysis of asthma incidence and long-term
air pollution exposures, Anderson et al.(56) reported
publication bias, as well as bias associated with unsys-
tematic data analyses (i.e., using only effect estimates
that were statistically significant rather than selecting
estimates based on a priori selection criteria). Sim-
ilarly, bias in synthesized results can also arise due
to differences in approaches taken to address sea-
sonal trends in health effects of interest (e.g., mortal-
ity and asthma) that are unrelated to O3 exposures.
For example, in time-series analyses, researchers of-
ten use a spline-based nonlinear function to repre-
sent the trend of a health effect over time, with the
function’s degrees of freedom describing the trend.
Some studies use a fixed degrees of freedom based
on biological knowledge or previous work regarding
trends (e.g., an observation that the asthma attack
rate is greater during the spring); while others may
use an estimated degrees of freedom based on the
observed data. Because multicity studies are specif-
ically designed to use consistent study designs and
data analysis approaches, these aspects of bias are
minimized in these studies.

Meta-analyses of observational air pollutant epi-
demiology studies also indicate a potential source of
bias in results from single-city studies relative to co-
ordinated multicity studies. For example, as shown
in Fig. 5, Bell et al.(38) observed that the mortal-
ity estimates from their meta-analyses of single-city
studies were significantly higher than those from the
NMMAPS summary multicity estimates. The authors
suggested publication bias as the basis for this find-
ing, i.e., the NMMAPS multicity reports may more
routinely include negative results from individual
cities, while researchers conducting single-city stud-
ies may be less likely to submit negative findings for
publication.

Impacts of bias on study interpretation also arise
in lead studies. For example, Bellinger(57) identified
numerous potential opportunities for researchers to
selectively report or introduce bias in neurotoxic-
ity studies based on their choices regarding which

Fig. 5. Distributions of summary log-relative risks of all-cause
mortality associated with a 10-ppb increase in O3 in 95 cities
(NMMAPS) compared to a meta-analysis of 11 U.S. estimates.
The multicity results yielded a lower and more precise estimate of
the overall percent decrease in mortality associated with O3 expo-
sures than did the meta-analysis based on studies reporting results
from single cities. Source: Bell et al.(38)

confounders to adjust for and how to parameterize
them, how to parameterize exposure (e.g., quartiles
vs. quintiles, or linear vs. log-transformed), how to
express exposure/outcome associations (e.g., highest
vs. lowest quintile or piece-wise regression slopes),
and which analyses “among the myriad typically con-
ducted” to present. Bellinger(57) also illustrated how
conclusions can vary depending on choices made in
addressing covariates in the data analyses. In one in-
stance, conclusions regarding potential associations
between lead exposures and the results of a contin-
uous performance test (a measure of attention and
neurological functioning) depended on the statistical
criteria (i.e., p values) used to select covariates in-
cluded in the analyses.(58)

In another example, a series of communications
regarding a pair of meta-analyses of associations
between neurobehavioral effects and occupational
lead exposures highlights the need for clear trans-
parency in how data are selected and extracted to un-
derstand any sources of bias.(59–64) Specifically, one
meta-analysis of 22 studies of neurobehavioral ef-
fects in occupational populations exposed to lead
(with blood lead concentrations less than 70 μg/dL)
concluded: “The data available to date are incon-
sistent and are unable to provide adequate infor-
mation on the neurobehavioral effects of exposure
to moderate blood concentrations of lead.” (61) See-
ber et al.(63) determined that the “conclusions from
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published results about neurotoxic effects of in-
organic lead exposures <700 μg lead/L blood
[70 μg/dL] are contradictory at present”; however,
the authors also noted that available test results “pro-
vide evidence for subtle deficits being associated with
average blood lead levels between 370 and 520 μg/L
[37 and 52 μg/dL].” These research groups debated
a number of choices made in compiling and analyz-
ing the component studies, including whether study
quality and potential confounding factors were ade-
quately accounted for, whether the number of neu-
robehavioral test measures showing significant re-
sults (reported to be two out of 22 measures in Good-
man et al.(61)) was appropriately addressed, and the
degree to which performance prior to lead exposure
was accounted for in the underlying studies.

A study of attention deficit hyperactivity disor-
der (ADHD) symptoms in young children (i.e., inat-
tention and hyperactivity/impulsivity) illustrates how
meta-analyses cannot remediate fundamental limita-
tions in the underlying studies. Specifically, a meta-
analysis estimated the average ADHD-related effect
size in 33 studies of children and adolescents (i.e., as-
sociations between ADHD symptoms or diagnoses
and various measures of lead exposure.(50) As rec-
ognized by US EPA’s Clean Air Science Advisory
Committee in its review of US EPA’s Integrated Sci-
ence Assessment for Lead,(65) most studies of poten-
tial associations between lead exposure and ADHD
fail to include or adequately assess information re-
garding parental psychopathology; this fundamen-
tal factor may play an important role in children’s
ADHD status “via parenting behavior, and/or ge-
netic contributions to disorder type.” As acknowl-
edged by Goodlad et al.,(50) “the conclusions that can
be drawn from the current study are limited by the
methodological designs of the studies that were an-
alyzed” (including the lack of information regarding
parental ADHD status) and “these studies and the
meta-analysis of these studies describe the associa-
tion between lead burden and ADHD symptoms and
cannot be used to draw strong causal conclusions.”
Clearly, an essential component of any meta-analysis
is a sound understanding and acknowledgment of any
limitations or other notable features of the included
studies.

3.2.2. Heterogeneity

Heterogeneity is a pervasive challenge in synthe-
sizing results from observational epidemiology stud-
ies. As a result, air pollutant researchers have worked

to make certain categories of available studies more
consistent and make it easier to more effectively
combine and compare study results. As described
above, as one means of enhancing data integration,
some researchers have conducted multicity studies
applying a common research approach at numerous
sites.

Despite efforts to reduce the effects of hetero-
geneity on air pollution research, studies continue to
differ with respect to such factors as outcome defi-
nitions, study populations (e.g., age), study periods
(e.g., seasonal vs. year-round analyses), and statisti-
cal methods (including approaches to assessing con-
founding by co-pollutants and other factors). For
example, in time-series studies of air pollution and
mortality, a principal issue is how confounding by
temporal cycles and weather is addressed. In one in-
stance, researchers identified software issues related
to the use of the GAM model that suggested this
model overestimated effects for some air pollutants;
these issues were subsequently corrected.(46) For O3,
issues also arise because U.S. air monitoring data are
only collected in the summer in many areas. In addi-
tion, researchers have used different exposure aver-
aging times to evaluate O3 effects (e.g., 24-hour aver-
age, 8-hour average, and 1-hour maximum), yielding
mortality estimates that are not equivalent. If these
differences are not addressed appropriately in data
analyses (including meta-analyses), unreliable con-
clusions may be drawn.

The lead literature also reflects examples of ef-
forts undertaken to reduce the heterogeneity inher-
ent in observational epidemiology studies, as well
as the impacts of such efforts on lead health ef-
fects research and regulatory applications. As noted
above, one such effort began in the early 1980s,
when researchers in the United States and sev-
eral other countries undertook a coordinated set of
prospective cohort studies using similar research pro-
tocols (hereafter, “the longitudinal lead studies”).
Focusing primarily on the neurocognitive develop-
ment of participants (e.g., as reflected in IQ mea-
sures), evaluation of study subjects began prior to
birth and has extended, in some cases, to young
adulthood.(66) The comparability of the longitudinal
lead studies’ designs has fostered numerous publi-
cations over the past three decades, including com-
parative discussions within specific study reports and
comparative evaluations of such issues as the age
range thought to represent the most susceptible pe-
riod to lead effects.(67) As discussed below, efforts
to enhance consistency among the longitudinal lead
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studies have not removed all barriers to effective
data synthesis.

While the researchers involved in the longitudi-
nal lead studies worked to enhance the consistency
of certain elements of study design and implementa-
tion, an early effort to conduct a meta-analysis based
on 35 reports from five of these studies observed that
the approaches used to analyze and report the study
results were less consistent. In particular, Thacker
et al.(68) found that it was not possible to compile
the data from these studies because they differed re-
garding the statistical approaches that were used to
summarize the study observations (e.g., data trans-
formations, such as treatment of blood lead data as a
categorical or continuous variable, and statistical
summary parameters, such as regression coefficients,
correlations, and changes in standardized scores) and
they provided insufficient information to develop a
consistent set of statistical measures. More funda-
mentally, few overlaps were observed in the times at
which blood lead concentrations and IQ were mea-
sured in the studies. Other factors hampering meta-
analyses included conflicting results and inconsistent
patterns of regression and correlation coefficients
(i.e., heterogeneity(68)). As a result, despite efforts to
enhance study comparability, they were insufficient
to support the more detailed comparisons and anal-
yses of a formal meta-analysis. To support greater
consistency in study reporting and data collection in
a centralized location, Thacker et al.(68) urged de-
velopment of a registry for the longitudinal lead
studies.

Subsequent efforts using pooled data (not sum-
mary estimates) from a subset of these studies have
played a central role in US EPA’s efforts to set air
standards for lead as well as other regulatory and risk
assessment settings.(69) However, this pooled analy-
sis reflects only a small portion of the health effects
literature available for lead. Moreover, researchers
have noted that studies of neurodevelopmental im-
pacts (of lead and other substances), as well as other
areas of epidemiological research, would benefit if
researchers used more consistent analytical and re-
porting approaches.(57,70,71) In particular, focusing on
neurotoxicity data, Bellinger(57) advocated for the
development of “consensus standards for the con-
duct, analysis, and reporting of epidemiologic re-
search . . . [to] enhance the credibility of the data gen-
erated (and of the field as a whole), as well as the
ease with which the results of different studies can be
compared and combined in meta-analyses.”

3.3. Future Directions

The types of challenges discussed above for syn-
thesizing data from observational epidemiology stud-
ies are not limited to air pollutant studies, and other
attempts at meta-analysis have led to similar conclu-
sions regarding the need to improve data collection
to better support data synthesis. For example, de-
spite identifying approximately 40 publications ad-
dressing studies of 11 cohorts, researchers exploring
the possibility of conducting a meta-analysis regard-
ing associations between neurotoxicity and polychlo-
rinated biphenyl (PCB) compounds concluded that
the “studies were too dissimilar to allow a mean-
ingful quantitative examination of outcomes across
cohorts.”(72) They note that studies of neurodevelop-
mental toxicity might be particularly vulnerable to
heterogeneity due to the large number of test bat-
teries available (often with numerous combinations
of subtests) and varying options for scales and cut-
off points for categorizing results. To better support
meta-analysis efforts and study comparisons, these
researchers recommend that future research efforts
continue to use assessment measures and exposure
assessment methods that are comparable to previ-
ous methods, even as new methods are developed.
They also recommend development of specific as-
sessment and statistical methods to be used in stud-
ies, as well as approaches for greater data sharing
(e.g., as a component of research funding require-
ments) and data/analysis archiving (e.g., by journals).
Their general recommendations are clearly transfer-
able to other research areas. Moreover, as recognized
by Meyer-Baron et al.,(73) enhancing efforts to sys-
tematically synthesize and summarize available re-
search findings is not only important for developing
sound study interpretations, but is also increasingly
important for more effectively identifying research
gaps that most warrant use of decreasing research
funding resources.

Another challenge in air pollution research is
how to correctly assess the effects of individual
air pollutants and evaluate confounding effects and
other interactions of co-pollutants and other fac-
tors, such as nonchemical stressors (e.g., socioeco-
nomic variables).(74) Although some efforts have
been made to meta-analyze multipollutant data, the
lack of consistently reported results from multipollu-
tant analyses has hindered proper data synthesis.(36)

Opportunities remain for better data evaluation and
reporting to enhance synthesis across such studies.
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New statistical techniques are advancing and im-
proving the use of observational epidemiology data
in meta-analyses. For example, Bayesian hierarchical
statistical techniques, which are being implemented
in multicity study analysis, provide opportunities for
evaluating factors that contribute to heterogeneity in
single-city studies, including the potential for real dif-
ferences in effects to exist among cities. In such anal-
yses, a two-stage Bayesian hierarchical model can be
developed in which the effects observed in each city
are assumed to differ but to follow the same distribu-
tion (with a distribution mean of the overall multicity
effect and a distribution variance quantifying the het-
erogeneity among cities). Hybrid meta-analytic ap-
proaches are also being developed to incorporate
uncertainty associated with combining information
from a limited number of studies.(74,75)

Overall, the diverse air pollutant observational
epidemiology literature presents many opportunities
for applying meta-analysis approaches and learning
how to refine and improve such approaches. As
illustrated above, approaches used to report study
data can influence whether researchers can synthe-
size study findings, or whether bias is introduced
into analyses (e.g., where researchers selectively
report only a subset of study findings). Most notably,
the extensive inherent heterogeneity has spurred
researchers to develop approaches for encouraging
greater study consistency in certain research areas
(e.g., implementing multicity studies of air pollution
exposures or encouraging development of guidelines
for neurotoxicity studies). As revealed by previous
efforts to implement more consistent research ap-
proaches, such efforts must take a broad perspective
on the concept of study consistency. In particular,
to enhance the ability of researchers to synthesize
results from multiple individual studies, consistency
guidelines should consider issues associated with
data analysis and reporting, as well as study design
and implementation.

4. TOXICITY STUDIES

To date, NAAQS levels and averaging times
have been based primarily on human data, but the
underlying causation evaluations also consider tox-
icology data. Animal studies often examine end-
points relevant to the causal questions posed by the
NAAQS process. Although meta-analyses have tra-
ditionally been used mostly for human data,(76) they
can be helpful for synthesizing animal data for spe-
cific endpoints and determining whether those data
are robust.

Heterogeneity in animal toxicity studies can arise
due to the use of different species, study designs,
and protocols. However, they may be more homo-
geneous than observational epidemiology studies be-
cause researchers can better control exposures, test
conditions, and outcome assessments. Thus, evalu-
ating data from laboratory animal studies may help
elucidate issues raised in epidemiology studies or in
meta-analyses of those studies. Using meta-analysis
to evaluate animal study results could also encourage
researchers to use more consistent study designs that
in turn would strengthen subsequent meta-analyses.
In addition, the increased precision of meta-analyses
as compared to analyses of individual studies can
help reduce the number of laboratory animals used in
research; a meta-analysis of existing data may prove
to be a more effective and informative use of re-
search resources than a new primary experiment in
animals when none of the previous experiments ask-
ing the same biological question have had sufficient
statistical power.(77)

Many types of data from experimental studies us-
ing laboratory animals can be summarized and quan-
tified using meta-analysis approaches. Animal study
data may be binary (e.g., pregnancy, mortality), cat-
egorical (e.g., low, medium, or high amount of cel-
lular damage in a particular organ), or continuous
(e.g., blood pressure, lung function decrements). The
data may also be presented as counts or percentages,
such as the total number or percentage of treated
animals with a specific tumor type. The methods
for analyzing these data can also vary. In a review
of 46 published meta-analyses of laboratory animal
studies, Peters et al.(77) determined that researchers
most commonly used simple methods to quantita-
tively synthesize results across studies, such as calcu-
lating mean or median values of outcome measures.
They have also applied other methods, such as fixed-
and random-effects precision-weighted models and
exposure-response models.

For example, Valberg and Crouch(78) conducted
a meta-analysis of data from eight studies of lung tu-
mors in rats following lifetime inhalation of diesel ex-
haust particulates (DEPs), evaluating statistical evi-
dence of a threshold in lung tumor response between
high and low exposure concentrations. They used a
multistage model to determine maximum likelihood
estimates and upper confidence limit estimates of the
exposure-response slope, concluding that the tumor
responses observed at high levels of DEP exposure
do not occur at low exposures. By contrast, in a meta-
analysis of organ toxicity in laboratory animals ex-
posed to nano-titanium dioxide, Chang et al.(79) used
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a simpler approach based on the number of studies
with positive findings at each dose for each endpoint.
The authors stated that because of the variety of an-
imal species and endpoints included in the studies, it
was not possible to calculate a summary estimate of
effect size. They determined that the pattern of pos-
itive results for the in vivo toxicity of nano-titanium
dioxide depended on the dose, exposure route, and
organ examined. They also observed that the highest
percentage of positive studies reported effects in the
liver and kidney. These findings were not evident by
reviewing the individual studies.

Meta-analyses of animal toxicity studies can help
determine whether observed effects of chemical ex-
posures are consistent and readily generalized, but
several factors must be considered. As with human
data meta-analyses, publication bias can significantly
affect interpretation of animal data meta-analyses,
yielding overestimates of treatment-related effects.
In addition, as noted above, between-study hetero-
geneity is a common meta-analysis feature that must
be addressed. Some heterogeneity arises because
studies differ in the animal species used. However,
studies using different species can be combined in a
meta-analysis if there is evidence that the outcome of
interest works by the same mechanism across species
or if species differences are accounted for in the sta-
tistical models.(77)

A major problem associated with animal data
meta-analyses is the large number of published stud-
ies that incompletely report study design and meth-
ods. No widely used guidelines exist for reporting
results from individual animal experiments, so the
quality of primary studies varies. High-quality stud-
ies with detailed experimental information will fa-
cilitate high-quality meta-analyses. Missing informa-
tion for a given parameter can introduce bias into the
study, as well as any meta-analysis incorporating the
study. Failure to consider study differences in the sta-
tistical models as a result of missing information can
also yield reduced statistical power and false posi-
tive results.(80) If possible, all experimental variables
should be incorporated into the analysis. Adhering
to high-quality standards for conducting and report-
ing experiments can reduce the confounding effects
of bias and enhance the validity and precision of the
results.

In recent years, several investigators have pro-
posed guidelines for reporting laboratory animal
data in primary studies to improve the quality of sci-
entific publications and facilitate meta-analyses and
systematic reviews.(77,81–84) For example, Hooijmans

et al.(82) developed a “gold standard publication
checklist” of items that should be included in every
published animal study and Kilkenny et al.(83) rec-
ommend the use of ARRIVE (Animals in Research:
Reporting In Vivo Experiments) guidelines, a 20-
item checklist describing the minimum information
that all scientific publications reporting animal
research should include. In addition to general in-
formation on the study design and methods, each set
of guidelines recommends a sample size calculation
prior to starting the study. In a related effort to
strengthen animal studies and their usefulness, a
recent review focused on methods for assessing the
risk of bias, identifying 30 approaches that have been
used (including approaches applied in some of the
guideline documents discussed above).(85)

Although they are not currently used in causa-
tion evaluations supporting NAAQS determinations,
meta-analyses of animal toxicity studies can improve
interpretation of existing results from primary stud-
ies, which can inform causality determinations by
providing plausibility for associations observed in
human studies. Meta-analysis offers a framework
for investigating potential publication bias, which
can lead to overestimates of treatment effects and
make the evidence unreliable for regulatory decision
making. If the sources of bias in laboratory animal
studies are better understood, these studies may
be conducted and reported using higher quality
approaches. Such improvements in the underlying
scientific studies would help regulatory decisions to
be made based on high-quality, unbiased data.

5. MECHANISTIC STUDIES

As with studies of animal toxicity data, stud-
ies reporting mechanistic data that are considered in
the causality evaluations for the NAAQS can also
be amenable to meta-analysis. Combining data from
multiple mechanistic studies in a meta-analysis can
help scientists better understand the mode of action
(MoA) of a particular chemical and the biological
plausibility of health effects reported in studies of hu-
mans or animals.

There are many types of in vitro mechanistic
data that can assist understanding of the toxicity of
chemicals at the cellular or molecular level. These
types include data regarding cytotoxicity, enzyme
activities, apoptosis, inflammation, cell proliferation,
genotoxicity, cell transformation, genetic poly-
morphisms, and expression of genes, proteins, or



Rethinking Meta-Analysis 15

metabolites. Similar to animal data, mechanistic data
can be binary, categorical, continuous, or reported
as counts or percentages, and these data can be
combined across studies using multiple statistical
methods. Between-study heterogeneity is also an
issue with mechanistic studies, as cell types and
tissues from different species—maintained under
different in vitro conditions and subjected to dif-
ferent protocols—can be used to explore the same
biological question.

One category of mechanistic study that pro-
vides a good opportunity for meta-analysis is global
gene expression studies using microarray technology.
Evolving over the past two decades, this technology
is being used in a wide array of contexts, providing
an opportunity for innovative meta-analysis applica-
tions. Although these studies can generate a large
amount of data that require reliable interpretation,
they often have a relatively small sample size, as the
simultaneous expression of tens of thousands of gene
probes is typically examined in only tens or hundreds
of biological samples. Combining gene expression
studies through meta-analysis yields a larger data set,
which increases the statistical power to more pre-
cisely estimate treatment- or exposure-related differ-
ences in gene expression. The increasing public avail-
ability of raw data from microarrays in various repos-
itories greatly enhances the feasibility of conducting
a meta-analysis of gene expression studies.(86) There
are many gene expression meta-analyses in the pub-
lished literature, and Ramasamy et al.(87) outlined
practical guidelines for conducting a meta-analysis of
microarray data sets in seven distinct steps.

Several challenges exist for conducting meta-
analyses of gene expression data. One challenge is
the data quality regarding reporting of phenotypic
information about the biological samples examined.
A set of criteria called MIAME (Minimum Informa-
tion About a Microarray Experiment) was developed
to guide researchers in providing information on the
necessary experimental conditions for verifying and
reproducing microarray study results.(88) Microar-
ray data submitted to public repositories, as well as
to many scientific journals for publication, must be
MIAME-compliant, but information often is incom-
plete regarding the biological properties of samples
and the phenotypes that were assayed, including the
sex and age of the organism or tumor information
(e.g., stage, grade, metastasis) for cancer studies.(89)

To ensure the reliability and overall quality of meta-
analyses of these studies, it is necessary to include as
much biological information as possible when indi-
vidual gene expression studies are reported.

Another challenge is that the results of a meta-
analysis of gene expression studies can often be dom-
inated by an outlying study, which can be a signif-
icant problem when analyzing thousands of genes
simultaneously within the “noisy” environment of
a microarray experiment. Outlying data can re-
duce the statistical power of the study, but methods
that combine robust rank statistics can alleviate this
issue.(80)

A further challenge for combining gene ex-
pression data from multiple studies is the technical
complexity of integrating data across multiple mi-
croarray platforms. Many microarray platforms are
available, with overlapping sets of gene probes across
platforms. While some normalization procedures
require all studies in a microarray data meta-analysis
to use the same platform for merging data sets,
some investigators have developed advanced nor-
malization techniques to eliminate between-study
heterogeneity due to varying platforms and allow
data sets to be directly merged.(80)

Examining gene expression changes in cells or
tissues from different species can also be a source
of between-study heterogeneity, as large variability
often exists between gene expression patterns from
different organisms. Conversely, combining data sets
from multiple species can increase the potential to
detect gene expression changes related to biologi-
cal processes that are evolutionarily conserved across
species, which can support a hypothesized MoA. Sta-
tistical methods for reliable cross-species analyses of
gene expression data have been proposed by several
investigators (as reviewed by Kristiansson et al.(90)).

In addition to gene expression and other types of
in vitro studies, in vivo mechanistic data from studies
in laboratory animals (such as those discussed in the
previous section) and humans can also be combined
using meta-analysis methods. For example, Nakao
et al.(91) investigated whether the behavioral and cog-
nitive deficits of ADHD are associated with under-
lying structural and functional brain abnormalities
in humans. Specifically, they combined data from
14 structural neuroimaging studies of gray matter
abnormalities in the brains of ADHD patients and
healthy control subjects and used meta-regression
methods to examine the effects of age and use
of stimulant medication on gray matter volume
in specific brain areas. Similar investigations of
brain structure and function have also been under-
taken in lead-exposed individuals as one compo-
nent of recent interest in ADHD by lead health
effects researchers.(92–95) Like gene expression stud-
ies, structural neuroimaging studies are an example



16 Goodman et al.

of a relatively new research tool that is applied in
an increasing range of contexts and generates large
amounts of data; thus, such studies are well suited to
being combined using meta-analysis techniques.

It is important to use all of the available in-
formation on a chemical at relevant doses or expo-
sure levels when evaluating the likelihood that expo-
sure can cause adverse health effects, including data
from mechanistic studies. Although not yet com-
monly used for mechanistic data, meta-analysis can
be an objective method for combining the results of
these studies in causality determinations for NAAQS
as more mechanistic studies are conducted. By help-
ing to synthesize results regarding a chemical’s
MoA, meta-analyses of mechanistic studies can help
researchers understand whether associations from
epidemiology and animal toxicity studies are biolog-
ically plausible. For example, data from mechanis-
tic and toxicity studies might suggest a certain MoA
for toxicity; however, if the toxicity data indicate a
threshold for effects that is much greater than the
exposures associated with epidemiology study find-
ings, synthesis of such findings would raise questions
regarding the causal nature of the associations ob-
served in the epidemiology studies. Such analyses can
provide a more objective basis for regulatory deci-
sions.

6. DISCUSSION

Meta-analysis provides a useful framework
that offers many benefits for systematically orga-
nizing, synthesizing, and interpreting data for a
wide range of research areas and study types. As
illustrated in this article, meta-analysis is adaptable
to many types of outcomes, study designs, and
categories of outcome measures. Meta-analysis can
be particularly useful for identifying and exploring
the impacts and sources of heterogeneity in study
results, a factor that is particularly prevalent in
observational epidemiology studies. Such tools can
also be useful for identifying limitations common
to many studies and examining factors that may
influence perspectives on overall study findings.
Where suitable data are available, meta-analysis or
meta-regression can help determine the overall mag-
nitude of outcomes reflected in study findings. For
research areas where individual study sizes are often
relatively small (e.g., human controlled exposure
and animal toxicology studies), data aggregation via
meta-analysis can strengthen researchers’ ability to
draw well-supported conclusions.

Meta-analysis techniques can also allow re-
searchers to draw upon a broader database when
conducting analyses to support policy determina-
tions. For example, when establishing an effects
screening level for long-term exposures to nickel in
air, the Texas Commission on Environmental Qual-
ity (TCEQ) derived a unit risk factor (URF) for
potential carcinogenic effects using a meta-analysis
approach.(96) Specifically, instead of deriving a toxi-
city value based on a dose or exposure level from a
single study, TCEQ integrated three values from two
studies of lung cancer in nickel-exposed workers to
derive a final URF that reflected the relative value
and significance of the data from each study. More-
over, where research or policy questions draw upon
findings from a variety of areas and disciplines (e.g.,
as is required in causality determinations or WoE
evaluations based on epidemiology, toxicology, and
mechanistic studies), the results from sound meta-
analyses of multiple individual components can be
integrated to yield a stronger foundation for the ul-
timate question of interest.

Both the outcome of specific meta-analyses
and the meta-analysis process itself can yield useful
insights for answering scientific questions and mak-
ing policy decisions. Most notably, conducting the
systematic study review required for a meta-analysis
can help researchers resolve and understand the
basis for apparent inconsistencies among individual
study results. Comparing studies in a meta-analysis
framework can also help identify false positives,
insights regarding factors influencing study results,
and whether study findings can be generalized to
other populations. Furthermore, sensitivity analysis
within a meta-analysis framework can indicate
how robust available data are and how specific
study results influence the overall study findings.
Even where data are insufficient or unsuitable
for conducting a meta-analysis, the process of re-
viewing the available data within a meta-analysis
framework can help researchers identify important
factors influencing the study outcomes or criti-
cal data gaps that need to be explored in future
research.

Despite its many strengths, meta-analysis cannot
resolve all data interpretation issues. In particu-
lar, meta-analyses cannot yield insights regarding
missing data elements or resolve limitations in the
underlying data (e.g., inadequately addressed poten-
tial confounding factors). Meta-analysis tools cannot
be applied in all circumstances—and cannot directly
encompass all available data regarding a research
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question; the studies included in a meta-analysis
must all address the same research question in the
same way (e.g., using the same endpoint measures).
As noted in one of the earliest sets of guidelines
for conducting meta-analyses of environmental
epidemiology studies,(4) meta-analysis may not be
useful when the relationship between the exposure
and outcome is obvious, only a few studies are
available for a particular exposure/outcome relation-
ship, access to data of sufficient quality is limited,
or substantial variation exists in study designs or
populations. In addition, important differences in
effect estimates, exposure metrics, or other factors
may limit or even preclude quantitative statistical
combination of multiple studies. Conversely, studies
excluded from a meta-analysis may form a critical
part of the context for interpreting the meta-analysis
results, e.g., by providing useful information to be
included when qualitatively discussing the results.(4)

Moreover, meta-analyses alone cannot address
the adversity of the studied outcome. Instead, such
determinations must consider the degree to which
the outcome measure is related to the actual ad-
verse effect of concern or reflects functional impair-
ment. For example, Goodman et al.(27) reported sta-
tistically significant effects associated with short-term
exposures to SO2 concentrations in controlled ex-
posures studies that were transient, reversible, and
of low severity, and concluded that the effects were
not likely to be adverse. Because meta-analyses have
more statistical power to detect associations than in-
dividual studies, statistically significant associations
that do not necessarily reflect an adverse effect are
more likely to be reported. This example also demon-
strates that other information must be brought to
bear to determine the toxicological or clinical signifi-
cance of statistically significant study results.

The examples discussed in this article illustrate
other key issues for meta-analysis and opportunities
for using meta-analysis in air pollutant research
and policy applications. For example, analyses of
controlled exposure data for NO2 demonstrate how
design choices can influence meta-analysis results,
interpretations, and consequent policy decisions.
Specifically, use of a more refined approach (e.g.,
incorporating more use of stratified evaluations and
meta-regressions) improves understanding of the
data and can help regulators avoid making policy
decisions based on erroneous data interpretations.
Meta-analyses examining associations between
short-term exposures to O3 and mortality highlight
the need to consider publication bias, stratified

analyses of seasonal effects, study estimate choices,
and multipollutant evaluations. Other examples
indicate how advances in analyzing and interpreting
data using meta-analysis can result from applying
existing tools more effectively as well as developing
more sophisticated methodologies. As a general
observation, numerous opportunities exist for ex-
panding the use of meta-analysis approaches to more
systematically synthesize the diverse, multifaceted
scientific literature underlying NAAQS evaluations,
even in areas where a number of meta-analyses have
been undertaken.

In addition to providing a tool for examining
specific studies, meta-analysis can provide a useful
framework and impetus for identifying and refining
research strategies and for designing more effective
and targeted studies. Clearly, use of more consistent
and comprehensive research designs and reporting
approaches can help mitigate key issues, particularly
heterogeneity in study design. Using more consistent
and comprehensive study designs can also enhance
the usefulness of small studies by providing a way to
aggregate such data. Excessive consistency should be
avoided as overuse of common designs would com-
plicate evaluation of whether or how study results
might differ if certain elements were changed.

As illustrated by the longitudinal studies of chil-
dren’s lead exposures, where researchers coordi-
nated certain aspects of study design and imple-
mentation (e.g., Bornschein and Rabinowitz(35)) the
goal of improving data synthesis among the studies
was hampered because the researchers did not ade-
quately encourage consistency in analyzing the data
and reporting results.(68) Similar observations regard-
ing the benefits of greater consistency in study design
and data analysis have been made in the more recent
scientific literature regarding this research area, e.g.,
regarding the neurotoxicity literature for lead,(57)

and other compounds, such as PCBs.(72) Goodman
et al.(72) also note that, even as research techniques
and test methods evolve (e.g., for exposure and/or
outcome assessment, or statistical analyses), studies
should continue to include research measures that
are comparable to those used in previous studies to
provide greater opportunities to compare and syn-
thesize studies conducted at different points in time.

A number of systematic review guidelines for
conducting studies or reporting results have also ac-
knowledged the benefits for data synthesis of greater
study consistency. One of the seminal efforts to pro-
mote more systematic evaluations of human health
data, the Cochrane Collaboration, was initiated in
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the early 1990s. This international network of in-
dividuals and institutions promotes methods and
resources for conducting, documenting, and enhanc-
ing the accessibility of systematic reviews of ran-
domized control trials of health-care interventions.
The Cochrane Handbook,(97) which was developed
to help scientists conduct credible and comparable
clinical trials with humans, provides a consistent ap-
proach for conducting clinical studies. Since exposure
studies of humans in chambers are similar to clini-
cal studies, adaptation of the principles reflected in
this handbook could greatly improve study consis-
tency, which in turn would enhance efforts to com-
pare results. In particular, the handbook encourages
researchers to adhere to consistent protocols to re-
duce the impact of author bias, promote method and
process transparency, reduce the potential for dupli-
cation, and allow peer review of the planned meth-
ods. Another key component is conducting statistical
analyses and assessing the quality of the body of ev-
idence. Adoption of such methods would greatly im-
prove analyses and allow more robust interpretations
of data generated in chamber studies with air pollu-
tants.

In another effort to promote sound data synthe-
ses, a review by Blair et al.(4) discussed uses of meta-
analysis techniques for environmental epidemiology
data, providing guidelines for when meta-analyses
should or should not be used. Two other examples of
guideline efforts relevant for evaluations of air pollu-
tants and other contaminants have focused on issues
specific for reporting of meta-analysis results. Stroup
et al.(7) emphasized issues for reporting results from
Meta-analysis Of Observational Studies in Epidemi-
ology (MOOSE), while Liberati et al.(98) built on a
previous effort (the QUality Of Reporting Of Meta-
analysis (QUOROM) Statement) to develop guide-
lines and checklists for reporting systematic reviews
and meta-analyses of studies of health-care inter-
ventions, as well as in other contexts (the Preferred
Reporting Items for Systematic reviews and Meta-
Analysis (PRISMA) Statement). Guidelines have
also been developed for reporting laboratory animal
meta-analyses,(77) as well as for reporting laboratory
animal study data to better support meta-analyses
and other systematic data reviews.(81–84) These types
of approaches list specific elements to be included
in meta-analysis documentation, such as study se-
lection criteria, approaches for assessing study bias,
and discussion of sensitivity analyses. Applying these
approaches would enhance interpretation, synthesis,
and understanding of meta-analysis results.

Reviewing air pollutant research also suggests
new areas where meta-analysis techniques could be
applied. In particular, studies evaluating potential
toxicity mechanisms present new opportunities for
synthesizing data using meta-analysis. Because some
of these research techniques are evolving (e.g., gene
expression studies or imaging studies of structural
changes in brain morphology), these research areas
are just beginning to be considered in causation eval-
uations for environmental contaminants. As such,
opportunities exist to proactively shape this research
area to more effectively support data syntheses using
meta-analysis techniques. In other areas of research,
such as animal toxicity studies, opportunities exist to
better coordinate study methodologies and reporting
approaches to enhance data syntheses.

Opportunities also exist for extending lessons
learned from studies of air pollutants to other re-
search settings, e.g., to identify specific approaches
or data elements that should be included in such
studies. For example, identifying potential causes
of ADHD has been an active research area in
recent years, with studies issued assessing po-
tential roles in ADHD for such substances as
NO2,(99) 2,4,6-trichorophenol,(100) organophosphate
pesticides,(101) perfluorinated compounds,(102) phtha-
late metabolites,(103) and a variety of compounds
characterized as endocrine disruptors.(104) As re-
search regarding many of these substances is in
an early stage, applying more consistent research
and reporting approaches (e.g., based on experience
gained from studies of lead) could yield data sets for
specific compounds that would be more amenable to
synthesis and interpretation. These data could also
be useful for assessing the relative magnitude of the
associations of these substances with ADHD.

Meta-analysis could also be more extensively ap-
plied when studying ecological impacts of environ-
mental contaminants. While meta-analysis applica-
tions have increased in this area, they have been most
prevalent in such fields as evolutionary ecology, com-
munity ecology, and conservation ecology.(105–107)

Meta-analysis innovations that have been explored
include meta-analyses of meta-analyses (e.g., in the
area of plant evolutionary ecology)(108) and within-
study meta-analyses as a way to more deeply exam-
ine findings from studies that have tested hypotheses
using several approaches (e.g., observational and ex-
perimental) and measurements (e.g., molecular, be-
havioral, and physiological).(109)

While meta-analysis is not the only way to
systematically review research study data (e.g.,
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see Rhomberg et al.(9)), the rigor, specificity, and
transparency of conducting and documenting this
type of evaluation present particular benefits, even
for situations where data limitations prevent a meta-
analysis from being completed. In particular, the
meta-analysis process encompasses a more specific,
in-depth consideration of which study elements
would need to be combined and how those elements
would need to be comparable across studies than
does a more qualitative systematic review. In specific
evaluations, this detailed perspective helps in se-
lecting studies to include in the systematic analyses,
e.g., by helping to identify factors influencing study
outcomes, study limitations, and appropriate study
groupings (e.g., stratified analyses). Meta-analysis
also allows weighting of results from studies of
varying quality and strength and yields synthesized,
well-documented effect estimates reflecting those
considerations. When addressing multifaceted (e.g.,
multidisciplinary) data sets, meta-analyses can help
make such data more manageable and understand-
able. For example, meta-analysis can provide a sys-
tematic approach for assessing the findings for each
relevant area and combining them to reach soundly
supported and transparent, well-documented conclu-
sions. In particular, meta-analyses in such contexts
can help focus attention on key literature aspects
warranting additional research or policy-oriented
evaluation. Because it emphasizes quantitative
syntheses, meta-analysis is particularly well suited
for assessing the relative importance of endpoints
and for identifying data gaps in existing knowledge.
Moreover, because meta-analysis techniques have
been applied in diverse settings, efforts to draw upon
ideas and methods developed in other contexts can
foster cross-disciplinary perspectives.(106,109) In addi-
tion, ongoing refinements in the use of certain statis-
tical techniques (e.g., meta-regression, hierarchical
models, and hybrid approaches) may provide oppor-
tunities for conducting meta-analyses of data that
may not, at first, appear amenable to the technique.

The meta-analysis perspective could also help
enhance the quality of the published literature, and
efforts to design and implement new research ef-
forts. For example, if potential meta-analysis appli-
cations were more routinely considered during jour-
nal publication reviews, publication bias could be
reduced (e.g., if negative or statistically insignificant
results were more widely recognized as having value
in data syntheses). Moreover, increased pervasive-
ness of a meta-analysis-oriented mindset—focusing
on how the pieces of the research puzzle could fit

together—would benefit scientific research and data
syntheses regardless of whether or not a quantitative
meta-analysis is undertaken.

Overall, as illustrated using examples from the
criteria air pollutant literature, meta-analysis is a ver-
satile tool that can help researchers more effectively
synthesize existing study data of all types and de-
sign data collection efforts in a variety of research
contexts. Its adaptability to many data types and its
ability to aid understanding of complex data sets is
particularly attractive in light of the ever-increasing
amount of scientific data being generated and need-
ing interpretation. To date, the use of meta-analysis
to support policy determinations has yet to reach
its full potential. Opportunities exist for conducting
more informative analyses using existing data, for
designing studies to better support future data syn-
theses, and for basing regulatory limits and other
science-based policy decisions on more representa-
tive analyses. In particular, thoughtful use of meta-
analysis shows much promise to support determi-
nations that must integrate information from many
disciplines. The case studies drawn from scientific
and regulatory evaluations of criteria air pollutants
yield observations broadly applicable to a wide range
of research and policy areas. In particular, the obser-
vations presented in this article can help to inform
use of meta-analysis within focused research contexts
or where one or more meta-analyses can be com-
bined to support evaluations of a more multifaceted
issue.
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